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Talk Plan

We present two achievability results for
© Gaussian Multiple Access Channel (MAC)

@ Gaussian Random Access Channel (RAC)
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Gaussian Multiple Access Channel (MAC)

Wi € [M;]— ENC1

Zn~N(0, I,,)

W € [My] — ENC2

DEC

" (WL W2, ---,WK)

Wy € [Mg] ——| ENCK

@ Maximal power constraint on the codewords: || X/||> < nPy for k =1,...,K

@ Notation: [M] ={1,...,M}, x4 = (x,: a € A)
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MAC Code Definition

Definition (K-transmitter MAC)

An (n,My,..., Mk, €, P1,..., Pk) code for the K-transmitter MAC
consists of

e K encoding functions fy : [Mk] = R", k € [K]
@ a decoding function g : R” — [M;] x -+ X [Mk]

with maximal power constraint

[fi(mi)|[* < nPx for my € [Mi], k € [K]

and

1

ST P [a(YR) # g | XE = fe(mi) VK € [K]] < ¢
M, miE[Mi]x < [Mk]

X
L=

average probability of error
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Prior art: Point-to-point (P2P) Gaussian Channel (K = 1)

@ Channel:
ZM~N(0,1,)

WeE{l,..,M}— ENC DEC |——W

e M*(n,e, P) = {maxM: an (n,M,e, P) code exists.}.

log M*(n, e, P) = nC(P)—+/nV(P)Q ! IognJr O(1)

1 - P+2) ;
C(P)=3log(1+P)  V(P)I=313572  third-order term
(capacity) (dispersion)

Achievability (>): [Tan-Tomamichel 15']
Converse (<): [Polyanskiy et al. 10']
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The Lesson from P2P Channel

We can achieve
1
log M*(n, e, P) = nC(P) — \/nV(P)Q*(e) + 5 logn+ O(1)
by using

Maximum Likelihood (ML)
Decoder

Uniformly distributed
codewords over:

n dim power sphere
(Spherical codebook)
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Motivation (MAC)

@ We are interested in refining the achievable third-order term for the
Gaussian MAC in the finite blocklength regime.

@ For the point-to-point case, it is known that the third-order term
+1/2log n is optimal. We want to show that +1/2log nl is
achievable for the Gaussian MAC.
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Gaussian MAC - Main Result

For any € € (0,1) and any Py, P, >0, an (n, My, M, €, P1, P>) code for
the two-transmitter Gaussian MAC exists provided that

|og Ml 1
log M, € nC(Pl, P2) = \/EQinV(V(Pl, P2), 6) + 5 log nl1 + O(].)]..
log M1 My
i)
@ C(Py, P2) = C(P2) = capacity vector
C(PL+ P2)

V(P1, P>) = 3 x 3 positive-definite dispersion matrix

@ Qinv(V,€) = multidimensional counterpart of inverse Q-function
Qun(V,e) 2 {zeR:PZ <2 >1-c}

where Z ~ N(0,V) component-wise /
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What does Qv (V, €) look like?

Qunv(l,€) & {x: x> Q_l(e)} Qv (V,€) 2 {z cRY: PlZ<z]>1- e}

PDF of N(0, 1) 4
04
035 38
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025 25 1 04
Quny ([0.4 0.5 005
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\
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o1 i
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005
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P[N(0,V) < (21, 22)] = 0.95
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Achievable region for Py =2,P> =1 and € = 1073
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Comparison with the literature

@ Our third-order term improves!
1
nC(Pl, P2) — \/EQinV(V(Pl, Pz), 6)—‘1-5 |Og nl + 0(1)1

> 0 (nt/*)1 [MolavianJazi-Laneman 15']
> O (n'/*logn)1  [Scarlett et al. 15]
@ Proof techniques:

e Our bound: Spherical codebook + Maximum-likelihood decoder
o [MolavianJazi-Laneman 15'] : Spherical codebook + threshold decoder
o [Scarlett et al. 15'] : Constant composition codes + Quantization
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Encoding and decoding

e Encoding: independently generate M codewords for k = 1, 2:

X7 ~ Uniform XP 1 X%}

n dim power sphere
(Spherical codebook)

[Shannon 49| used spherical codebook to bound error exponent of the
P2P Gaussian channel.
@ Decoding: Mutual information density

2 Pypixp xp(v" X7 X3)
Pyp(y")

u2(x, X35 y")
Maximum likelihood (ML) Decoder:
g(y") = arg max u12(f1(m), f2(m2); y")
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Main Tool: Random-Coding Union (RCU) Bound

P2P case: proved in [Polyanskiy et al. 10']
Using the ML decoder, for a general MAC:

Theorem (New RCU bound for MAC)

For arbitrary input distributions Px, and Px,, there exists a
(M1, My, €)-MAC code such that

€< E[min {17 (My — 1P [1(X1; Ya|X2) = u(Xy; Y2|X2) | X1, Xa, Yo
+ (M2 = D)P [12(Xa; Ya|X1) = 2(Xa; Ya|X1) | X1, Xz, Yo
+ (My — 1)(Ma — 1)P [01,0( X1, Xa; Ya) > 11,0(X1, Xo; Ya) | X1, Xa, Yo H,

where le,)'(l,Xz,Xz,Yz(Xl’)_(1’X2’)_<2’y) =
Px, (x1) Px, (%1) Px, (x2) Px, (%2) Py, x, x, (v X1, X2).

@ Crucial in refining the third-order term to %Iog n
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Key Challenge

Modified mutual information density r.v.:

u(X{; Y2|X3)
iz é ZZ(XZ", Y2n|X1n) — nC(P]_, Pz)
T1,2(X{, X2 Y2)

Pypixp xo(y"Ix1, x2)

ith Qyn ~ 1+ P+ Po)l,
Qyzn(y") with Qy; N, (1+ P+ P)ly)

T12(x1, %25 y") £ log

Lemma (New Berry-Esséen type bound)

Let D € R? be a convex, Borel measurable set and Z ~ N'(0,V(P1,P2)). Then
1. Co
P|— D| -PlZeD]| < —
Bl e <

@ [MolavianJazi-Laneman 15, Prop. 1] showed a weaker upper bound with

0] (nl%) using CLT for functions = affects the third-order term

@ We use a different technique to prove this lemma.
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Proof of Lemma

@ Problem: We cannot use Berry-Esséen theorem directly since X{" and
X3 are not i.i.d.
@ Solution:
o Conditional dist. %,|(X{", X)) = g is a sum of independent r.v.s
o Apply the multidimensional Berry-Esséen theorem to that sum of
independent vectors after conditioning on the inner product (X7, XJ).
e Then integrate the probabilities over g.
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Extension to K-transmitter (Px = P, My = M Y k € [K])

For any € € (0,1), and P > 0, an (n, M1, ¢, P1)-MAC code for the
K-transmitter Gaussian MAC exists provided that

Klog M < nC(KP) — \/n(V(KP) + Ve (K, P))Q 1 (e) + % log n+ O(1).

Vo (K, P) is the cross dispersion term

V(K. P) K(K —1)P?
T 21+ KP)? T
v
Ry,
Message set size vector:
o . )
log M, c@p) (R.R)
log M, € RF-1 I ’ /
log(My M --- M)

€@p) ¢y c@p)
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Talk Plan

We present two achievability results for
© Gaussian Multiple Access Channel (MAC)

@ Gaussian Random Access Channel (RAC)
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Random access

@ Random access solutions such as ALOHA, treating interference as
noise, or orthogonalization methods (TDMA/FDMA) perform poorly.
@ We want to design a random access communication strategy that

o does not require the knowledge of transmitter activity
e and still does not cause a performance loss compared to k-MAC.
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Rateless Gaussian RAC Communication

ACK bit is fed back to transmitters at times ng, nq, ..., ng

W, € [M]—— ENC

0 otherwise

ACK = {1 if successful decoding

f(Wy)™

. Z~N(0,1,
active . 0.1
unknown
‘ ’ o™ e o
Wy € [M]—— ENC DEC Wy, ..., W)
- —— ENC
silent 4 . .
K-k . Silent transmitters send all-zeros
man
v —— ENC

@ There are K transmitters in total. A subset of those with size k are active.
@ Nobody knows the active transmitters.

@ No probability of being active is assigned to transmitters.
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Rateless Gaussian RAC Communication

ACK bit is fed back to transmitters at times ng, nq, ..., ng

Wy € [M]—— ENC

0 otherwise

ACK = {1 if successful decoding

f(Wy)™

active ; Z~N(O, In)
k
(unknown) £, ) Y,?k R
Wy € [M]——{ ENC DEC Wy, ..., W)

~—— ENC

silent . . .

K —k) — . Silent transmitters send all-zeros

many

—— ENC

@ Identical encoding and list decoding as in [Polyanskiy 17']
@ Average probability of error < ¢, for k =0,...,K
@ New: Gaussian RAC, maximal power constraint: ||f(m)"||2 < n,P for all k and m
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Rateless Gaussian RAC Communication

ACK bit is fed back to transmitters at times ng, nq, ..., ng

Wy € [M]—— ENC

ACK = 1 if succe'ssful decoding
0 otherwise

HUR

active E Z~N(O, In)
unknown
( ’ W e I
Wk € [M]" ENC DEC (er ...,Wk)
- —— ENC
silent M . .
K-k . Silent transmitters send all-zeros
many
—— ENC

@ Rateless coding scheme that we defined in the context of DMCs [Effros, Kostina, Yavas, “Random access
channel coding in the finite blocklength regime", 18’]

@ Predetermined decoding times: ng, . . ., nk
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Communication Process

Epoch 1 starts

Send to all
transmitters ~ ‘ ‘
ACK=0 ACK=0 ACK=0 ACK=1
1 no n Ng—1 Nk
f f f
Decoder: No decoding No decoding gx-1(Y™1) = Wig_q)

Send to all transmitters

Epoch 2 starts

ACK=0 ACK=1
1 To nm
No decoding g1 0™) = wy
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RAC Code Definition

An ({nk, e}y, M, P)-RAC consists of
@ an encoder function f
o decoding functions {gx}K_,

such that

@ Maximal power constraints are satisfied:

[f(m)™]]? < nP for me {1,...,M}, ke {1,...,K}

@ and
w X P{{U{gf(yk"‘#e}}U{gk(Yk”*)Qm[k]}\x[zﬁ=f(mm)"k}SEk
m[k]E[M]k t<k

the average probability of error in decoding k messages at time n

v
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Gaussian RAC - Main Result

Theorem

For any K < 00, ek € (0,1) and any P > 0, an (M, {(nx, €x)}_,, P)-code
for the Gaussian RAC exists provided that

1
klog M < ni C(kP)—+/ni(V(kP) + Vo (k, P)) @ (e €k)+5 log i + O(1)

for all k € [K], for some positive constant C.

@ The same first, second, and third-order terms as in Gaussian MAC
with known number of transmittersl!
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Gaussian RAC - Encoding

o To satisfy the maximal power constraints for all decoding times
simultaneously, we set the input distribution as:

Subcodeword 1 Subcodeword 2 e Subcodeword K

Mo ny Ny Ng_q ng

ng-1)P

I

n; dimensional sphere

\ /
. Draw subcodewords

independently from the
surface of the spheres
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Feasible codeword set for Gaussian RAC

(] n1:2,n2:3,P:%:1

1If we use this input dist. for the Gaussian MAC, we achieve the same first three order terms.
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Gaussian RAC - Decoding

@ Mutual information density for t transmitters:

P nt nt e N
(™) 2 log Y X (v ’X[t])
A Pyze(y™)

@ Decoder output at time n; is

arg maxyg (F(mpg )™ y™) - if ™I = 1+ tP) < A

ge(y™) =
e otherwise

]

If e, send ACK = 0 to request the next subcodeword of length n; 1 — n;
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Summary of the main theorems

@ Gaussian MAC:
o We refine the achievable third-order term to 1/2log nl by using
spherical codebook and ML decoder.
o We derive a Berry-Esséen type bound for the spherical codebook.

@ Gaussian RAC:

e Our proposed rateless code performs as well in the first-, second-,
and third-order terms as the best known communication scheme
when the set of active transmitters is known.
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