Gaussian Multiple and Random Access in the Finite Blocklength Regime

Recep Can Yavas

California Institute of Technology

$$
\text { June 21-26, } 2020
$$

Joint work with Victoria Kostina and Michelle Effros ISIT 2020

This work was supported in part by the National Science Foundation (NSF) under grant CCF-1817241.

Talk Plan

We present two achievability results for
(1) Gaussian Multiple Access Channel (MAC)
(2) Gaussian Random Access Channel (RAC)

Gaussian Multiple Access Channel (MAC)

- Maximal power constraint on the codewords: $\left\|X_{k}^{n}\right\|^{2} \leq n P_{k}$ for $k=1, \ldots, K$
- Notation: $[M]=\{1, \ldots, M\}, x_{\mathcal{A}}=\left(x_{a}: a \in \mathcal{A}\right)$

MAC Code Definition

Definition (K-transmitter MAC)

An $\left(n, M_{1}, \ldots, M_{K}, \epsilon, P_{1}, \ldots, P_{K}\right)$ code for the K-transmitter MAC consists of

- K encoding functions $f_{k}:\left[M_{k}\right] \rightarrow \mathbb{R}^{n}, \quad k \in[K]$
- a decoding function $\mathrm{g}: \mathbb{R}^{n} \rightarrow\left[M_{1}\right] \times \cdots \times\left[M_{K}\right]$
with maximal power constraint

$$
\left\|f_{k}\left(m_{k}\right)\right\|^{2} \leq n P_{k} \text { for } m_{k} \in\left[M_{k}\right], k \in[K]
$$

and

Prior art: Point-to-point (P2P) Gaussian Channel $(K=1)$

- Channel:

- $M^{*}(n, \epsilon, P) \triangleq\{\max M: \quad$ an (n, M, ϵ, P) code exists. $\}$.

$$
\left.\begin{array}{r}
\log M^{*}(n, \epsilon, P)=n C(P)-\sqrt{n V(P)} Q^{-1}(\epsilon)+\frac{1}{2} \log n+O(1) \\
\begin{array}{cc}
C(P)=\frac{1}{2} \log (1+P) \\
(\text { capacity })
\end{array} \\
\begin{array}{c}
V(P)=\frac{P(P+2)}{2(1+P)^{2}} \\
\text { (dispersion) }
\end{array}
\end{array} \text { third-order term }\right) ~
$$

Achievability (\geq): [Tan-Tomamichel 15']
Converse (\leq) : [Polyanskiy et al. 10']

The Lesson from P2P Channel

We can achieve

$$
\log M^{*}(n, \epsilon, P)=n C(P)-\sqrt{n V(P)} Q^{-1}(\epsilon)+\frac{1}{2} \log n+O(1)
$$

by using

Motivation (MAC)

- We are interested in refining the achievable third-order term for the Gaussian MAC in the finite blocklength regime.
- For the point-to-point case, it is known that the third-order term $+1 / 2 \log n$ is optimal. We want to show that $+1 / 2 \log n 1$ is achievable for the Gaussian MAC.

Gaussian MAC - Main Result

Theorem

For any $\epsilon \in(0,1)$ and any $P_{1}, P_{2}>0$, an $\left(n, M_{1}, M_{2}, \epsilon, P_{1}, P_{2}\right)$ code for the two-transmitter Gaussian MAC exists provided that

$$
\left[\begin{array}{c}
\log M_{1} \\
\log M_{2} \\
\log M_{1} M_{2}
\end{array}\right] \in n \mathrm{C}\left(P_{1}, P_{2}\right)-\sqrt{n} Q_{\mathrm{inv}}\left(\mathrm{~V}\left(P_{1}, P_{2}\right), \epsilon\right)+\frac{1}{2} \log n 1+O(1) 1
$$

- $\mathbf{C}\left(P_{1}, P_{2}\right)=\left[\begin{array}{c}C\left(P_{1}\right) \\ C\left(P_{2}\right) \\ C\left(P_{1}+P_{2}\right)\end{array}\right]=$ capacity vector
$\mathrm{V}\left(P_{1}, P_{2}\right)=3 \times 3$ positive-definite dispersion matrix
- $Q_{\text {inv }}(\mathrm{V}, \epsilon)=$ multidimensional counterpart of inverse Q -function

$$
Q_{\mathrm{inv}}(\mathrm{~V}, \epsilon) \triangleq\left\{\mathbf{z} \in \mathbb{R}^{d}: \mathbb{P}[\mathbf{Z} \leq \mathrm{z}] \geq 1-\epsilon\right\}
$$

where $\mathbf{Z} \sim \mathcal{N}(\mathbf{0}, \mathrm{V})$ component-wise

What does $Q_{\text {inv }}(V, \epsilon)$ look like?

$$
Q_{\mathrm{inv}}(1, \epsilon) \triangleq\left\{x: x \geq Q^{-1}(\epsilon)\right\} \quad Q_{\mathrm{inv}}(\mathrm{~V}, \epsilon) \triangleq\left\{\mathrm{z} \in \mathbb{R}^{d}: \mathbb{P}[\mathbf{Z} \leq \mathrm{z}] \geq 1-\epsilon\right\}
$$

Example

Achievable region for $P_{1}=2, P_{2}=1$ and $\epsilon=10^{-3}$:

Comparison with the literature

- Our third-order term improves!

$$
n \mathrm{C}\left(P_{1}, P_{2}\right)-\sqrt{n} Q_{\mathrm{inv}}\left(\mathrm{~V}\left(P_{1}, P_{2}\right), \epsilon\right)+\frac{1}{2} \log n 1+O(1) 1
$$

$>O\left(n^{1 / 4}\right) 1 \quad$ [MolavianJazi-Laneman 15']
$>O\left(n^{1 / 4} \log n\right) 1 \quad$ [Scarlett et al. 15']

- Proof techniques:
- Our bound: Spherical codebook + Maximum-likelihood decoder
- [MolavianJazi-Laneman 15'] : Spherical codebook + threshold decoder
- [Scarlett et al. 15'] : Constant composition codes + Quantization

Encoding and decoding

- Encoding: independently generate M_{k} codewords for $k=1,2$:

n dim power sphere
(Spherical codebook)
[Shannon 49'] used spherical codebook to bound error exponent of the P2P Gaussian channel.
- Decoding: Mutual information density

$$
\imath_{1,2}\left(x_{1}^{n}, x_{2}^{n} ; y^{n}\right) \triangleq \log \frac{P_{Y_{2}^{n} \mid X_{1}^{n}, X_{2}^{n}}\left(y^{n} \mid x_{1}^{n}, x_{2}^{n}\right)}{P_{Y_{2}^{n}}\left(y^{n}\right)}
$$

Maximum likelihood (ML) Decoder:

$$
\mathrm{g}\left(y^{n}\right)=\arg \max _{m_{1}, m_{2}} \iota_{1,2}\left(\mathrm{f}_{1}\left(m_{1}\right), \mathrm{f}_{2}\left(m_{2}\right) ; y^{n}\right)
$$

Main Tool: Random-Coding Union (RCU) Bound

P2P case: proved in [Polyanskiy et al. 10']
Using the ML decoder, for a general MAC:

Theorem (New RCU bound for MAC)

For arbitrary input distributions $P_{X_{1}}$ and $P_{X_{2}}$, there exists a $\left(M_{1}, M_{2}, \epsilon\right)$-MAC code such that

$$
\begin{aligned}
\epsilon & \leq \mathbb{E}\left[\operatorname { m i n } \left\{1,\left(M_{1}-1\right) \mathbb{P}\left[\imath_{1}\left(\bar{X}_{1} ; Y_{2} \mid X_{2}\right) \geq \imath_{1}\left(X_{1} ; Y_{2} \mid X_{2}\right) \mid X_{1}, X_{2}, Y_{2}\right]\right.\right. \\
& +\left(M_{2}-1\right) \mathbb{P}\left[\imath_{2}\left(\bar{X}_{2} ; Y_{2} \mid X_{1}\right) \geq \imath_{2}\left(X_{2} ; Y_{2} \mid X_{1}\right) \mid X_{1}, X_{2}, Y_{2}\right] \\
& \left.\left.+\left(M_{1}-1\right)\left(M_{2}-1\right) \mathbb{P}\left[\imath_{1,2}\left(\bar{X}_{1}, \bar{X}_{2} ; Y_{2}\right) \geq \imath_{1,2}\left(X_{1}, X_{2} ; Y_{2}\right) \mid X_{1}, X_{2}, Y_{2}\right]\right\}\right]
\end{aligned}
$$

where $P_{X_{1}, \bar{x}_{1}, X_{2}, \bar{X}_{2}, Y_{2}}\left(x_{1}, \bar{x}_{1}, x_{2}, \bar{x}_{2}, y\right)=$ $P_{X_{1}}\left(x_{1}\right) P_{X_{1}}\left(\bar{x}_{1}\right) P_{X_{2}}\left(x_{2}\right) P_{X_{2}}\left(\bar{x}_{2}\right) P_{Y_{2} \mid X_{1} X_{2}}\left(y \mid x_{1}, x_{2}\right)$.

- Crucial in refining the third-order term to $\frac{1}{2} \log n$

Key Challenge

Modified mutual information density r.v.:

$$
\begin{gathered}
\tilde{\boldsymbol{\imath}}_{2} \triangleq\left[\begin{array}{c}
\tilde{\imath}_{1}\left(X_{1}^{n} ; Y_{2}^{n} \mid X_{2}^{n}\right) \\
\tilde{\imath}_{2}\left(X_{2}^{n} ; Y_{2}^{n} \mid X_{1}^{n}\right) \\
\tilde{\imath}_{1,2}\left(X_{1}^{n}, X_{2}^{n} ; Y_{2}^{n}\right)
\end{array}\right]-n \mathbf{C}\left(P_{1}, P_{2}\right) \\
\tilde{\imath}_{1,2}\left(x_{1}^{n}, x_{2}^{n} ; y^{n}\right) \triangleq \log \frac{P_{Y_{2}^{n} \mid X_{1}^{n}, X_{2}^{n}}\left(y^{n} \mid x_{1}^{n}, x_{2}^{n}\right)}{Q_{Y_{2}^{n}}\left(y^{n}\right)} \text { with } Q_{Y_{2}^{n}} \sim \mathcal{N}\left(\mathbf{0},\left.\left(1+P_{1}+P_{2}\right)\right|_{n}\right)
\end{gathered}
$$

Lemma (New Berry-Esséen type bound)

Let $\mathcal{D} \in \mathbb{R}^{3}$ be a convex, Borel measurable set and $\mathbf{Z} \sim \mathcal{N}\left(\mathbf{0}, \mathrm{V}\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right)\right)$. Then

$$
\left|\mathbb{P}\left[\frac{1}{\sqrt{n}} \tilde{\mathbf{\imath}}_{2} \in \mathcal{D}\right]-\mathbb{P}[\mathbf{Z} \in \mathcal{D}]\right| \leq \frac{C_{0}}{\sqrt{n}}
$$

- [MolavianJazi-Laneman 15', Prop. 1] showed a weaker upper bound with $O\left(\frac{1}{n^{1 / 4}}\right)$ using CLT for functions \Longrightarrow affects the third-order term
- We use a different technique to prove this lemma.

Proof of Lemma

- Problem: We cannot use Berry-Esséen theorem directly since X_{1}^{n} and X_{2}^{n} are not i.i.d.
- Solution:
- Conditional dist. $\tilde{\boldsymbol{\imath}}_{2} \mid\left\langle X_{1}^{n}, X_{2}^{n}\right\rangle=q$ is a sum of independent r.v.s
- Apply the multidimensional Berry-Esséen theorem to that sum of independent vectors after conditioning on the inner product $\left\langle X_{1}^{n}, X_{2}^{n}\right\rangle$.
- Then integrate the probabilities over q.

Extension to K-transmitter $\left(P_{k}=P, M_{k}=M \forall k \in[K]\right)$

Theorem

For any $\epsilon \in(0,1)$, and $P>0$, an ($n, M 1, \epsilon, P 1$)-MAC code for the K-transmitter Gaussian MAC exists provided that
$K \log M \leq n C(K P)-\sqrt{n\left(V(K P)+V_{c r}(K, P)\right)} Q^{-1}(\epsilon)+\frac{1}{2} \log n+O(1)$.
$V_{\mathrm{cr}}(K, P)$ is the cross dispersion term

$$
V_{\mathrm{cr}}(K, P)=\frac{K(K-1) P^{2}}{2(1+K P)^{2}}
$$

Message set size vector:

$$
\left[\begin{array}{c}
\log M_{1} \\
\log M_{2} \\
\vdots \\
\log \left(M_{1} M_{2} \cdots M_{K}\right)
\end{array}\right] \in \mathbb{R}^{2^{K}-1}
$$

Talk Plan

We present two achievability results for
(1) Gaussian Multiple Access Channel (MAC)
(2) Gaussian Random Access Channel (RAC)

Random access

- Random access solutions such as ALOHA, treating interference as noise, or orthogonalization methods (TDMA/FDMA) perform poorly.
- We want to design a random access communication strategy that
- does not require the knowledge of transmitter activity
- and still does not cause a performance loss compared to $k-M A C$.

Rateless Gaussian RAC Communication

ACK bit is fed back to transmitters at times $n_{0}, n_{1}, \ldots, n_{K}$

- There are K transmitters in total. A subset of those with size k are active.
- Nobody knows the active transmitters.
- No probability of being active is assigned to transmitters.

Rateless Gaussian RAC Communication

ACK bit is fed back to transmitters at times $n_{0}, n_{1}, \ldots, n_{K}$

- Identical encoding and list decoding as in [Polyanskiy 17']
- Average probability of error $\leq \epsilon_{k}$ for $k=0, \ldots, K$
- New: Gaussian RAC, maximal power constraint: $\left\|f(m)^{n} k\right\|^{2} \leq n_{k} P$ for all k and m

Rateless Gaussian RAC Communication

- Rateless coding scheme that we defined in the context of DMCs [Effros, Kostina, Yavas, "Random access channel coding in the finite blocklength regime", 18']
- Predetermined decoding times: $n_{\mathbf{0}}, \ldots, n_{K}$

Communication Process

Epoch 2 starts
Send to all transmitters

RAC Code Definition

Definition

An $\left(\left\{n_{k}, \epsilon_{k}\right\}_{k=0}^{K}, M, P\right)$-RAC consists of

- an encoder function f
- decoding functions $\left\{\mathrm{g}_{k}\right\}_{k=0}^{K}$

such that

- Maximal power constraints are satisfied:

$$
\left\|f(m)^{n_{k}}\right\|^{2} \leq n_{k} P \text { for } m \in\{1, \ldots, M\}, k \in\{1, \ldots, K\}
$$

- and

$$
\begin{gathered}
\frac{1}{M^{k}} \sum_{m_{[k]} \in[M]^{k}} \mathbb{P}\left[\{ \bigcup _ { t < k } \{ \mathrm { g } _ { t } (Y _ { k } ^ { n _ { t } }) \neq \mathrm { e } \} \} \bigcup \left\{\mathrm{~g}_{k}\left(Y_{k}^{n_{k}}\right) \stackrel{\pi}{\left.\left.\neq m_{[k]}\right\} \mid X_{[k]}^{n_{k}}=\mathrm{f}\left(m_{[k]}\right)^{n_{k}}\right] \leq \epsilon_{k}} \begin{array}{l}
\text { the average probability of error in decoding } k \text { messages at time } n_{k}
\end{array}\right.\right.
\end{gathered}
$$

Gaussian RAC - Main Result

Theorem

For any $K<\infty, \epsilon_{k} \in(0,1)$ and any $P>0$, an $\left(M,\left\{\left(n_{k}, \epsilon_{k}\right)\right\}_{k=0}^{K}, P\right)$-code for the Gaussian RAC exists provided that
$k \log M \leq n_{k} C(k P)-\sqrt{n_{k}\left(V(k P)+V_{c r}(k, P)\right)} Q^{-1}\left(\epsilon_{k}\right)+\frac{1}{2} \log n_{k}+O(1)$ for all $k \in[K]$, for some positive constant C.

- The same first, second, and third-order terms as in Gaussian MAC with known number of transmitters!

Gaussian RAC - Encoding

- To satisfy the maximal power constraints for all decoding times simultaneously, we set the input distribution as:

Feasible codeword set for Gaussian RAC

- $n_{1}=2, n_{2}=3, P=\frac{1}{3}:{ }^{1}$

[^0]
Gaussian RAC - Decoding

- Mutual information density for t transmitters:

$$
\imath_{[t]}\left(x_{[t]}^{n_{t}} ; y^{n_{t}}\right) \triangleq \log \frac{P_{Y_{t}^{n_{t}} \mid X_{[t]}^{n_{t}}}\left(y^{n_{t}} \mid x_{[t]}^{n_{t}}\right)}{P_{Y_{t}^{n_{t}}}\left(y^{n_{t}}\right)}
$$

- Decoder output at time n_{t} is

$$
g_{t}\left(y^{n_{t}}\right)= \begin{cases}\arg \max _{m_{[t]}} \imath_{[t]}\left(f\left(m_{[t]}\right)^{n_{t}} ; y^{n_{t}}\right) & \text { if }\left|\frac{1}{n_{t}}\left\|y^{n_{t}}\right\|^{2}-(1+t P)\right| \leq \lambda_{t} \\ \uparrow & \text { otherwise }\end{cases}
$$

If e, send $A C K=0$ to request the next subcodeword of length $n_{t+1}-n_{t}$

Summary of the main theorems

- Gaussian MAC:
- We refine the achievable third-order term to $1 / 2 \log n \mathbf{1}$ by using spherical codebook and ML decoder.
- We derive a Berry-Esséen type bound for the spherical codebook.
- Gaussian RAC:
- Our proposed rateless code performs as well in the first-, second-, and third-order terms as the best known communication scheme when the set of active transmitters is known.

References

(1) E. MolavianJazi and J. N. Laneman, "A second-order achievable rate region for Gaussian multi-access channels via a central limit theorem for functions, 'IEEE Transactions on Information Theory, vol. 61, no. 12, pp. 6719-6733, Dec. 2015.
(2) A. M. Scarlett, and A. G. i Fabregas, "Second-order rate region of constant-composition codes for the multiple-access channel, "IEEE Transactions on Information Theory, vol. 61, no. 1, pp. 157-172, Jan. 2015.
(3) Y. Polyanskiy, H. V. Poor, and S. Verdu, "Channel coding rate in the finite blocklength regime," IEEE Transactions on Information Theory, vol. 56, no. 5, pp. 2307-2359, May 2010.
(4) V. Y. F. Tan and M. Tomamichel, "The third-order term in the normal approximation for the AWGN channel," IEEE Transactions on Information Theory, vol. 61, no. 5, pp. 2430-2438, May 2015.
(5) M. Effros, V. Kostina, and R. C. Yavas, "Random access channel coding in the finite blocklength regime," in 2018 IEEE International Symposium on Information Theory (ISIT), June 2018, pp. 1261-1265.
(6) Y. Polyanskiy, "A perspective on massive random-access," in Proceedings 2017 IEEE International Symposium on Information Theory, Aachen, Germany, June 2017, pp. 2523-2527.

Thanks

- R. C. Yavas, V. Kostina, and M. Effros, "Gaussian multiple and random access in the finite blocklength regime," ArXiv/2001.03867, 2020. Available at: https://arxiv.org/abs/2001.03867

[^0]: ${ }^{1}$ If we use this input dist. for the Gaussian MAC, we achieve the same first three order terms.

