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Talk Plan

We present two achievability results for

1 Gaussian Multiple Access Channel (MAC)

2 Gaussian Random Access Channel (RAC)

2 / 30



Gaussian Multiple Access Channel (MAC)

Maximal power constraint on the codewords: ‖X n
k ‖2 ≤ nPk for k = 1, . . . ,K

Notation: [M] = {1, . . . ,M}, xA = (xa : a ∈ A)
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MAC Code Definition

Definition (K -transmitter MAC)

An (n,M1, . . . ,MK , ε,P1, . . . ,PK ) code for the K -transmitter MAC
consists of

K encoding functions fk : [Mk ]→ Rn, k ∈ [K ]

a decoding function g : Rn → [M1]× · · · × [MK ]

with maximal power constraint

‖fk(mk)‖2 ≤ nPk for mk ∈ [Mk ], k ∈ [K ]

and

1
K∏

k=1
Mk

∑
m[K ]∈[M1]×···×[MK ]

P
[
g(Y n

K ) 6= m[K ] | X n
k = fk(mk) ∀k ∈ [K ]

]
≤ ε

average probability of error
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Prior art: Point-to-point (P2P) Gaussian Channel (K = 1)

Channel:

M∗(n, ε,P) , {maxM : an (n,M, ε,P) code exists.}.

logM∗(n, ε,P) = nC (P)−
√

nV (P)Q−1(ε)+
1
2

log n + O(1)

C(P)= 1
2 log(1+P)

(capacity)
V (P)= P(P+2)

2(1+P)2

(dispersion)
third-order term

Achievability (≥): [Tan-Tomamichel 15’]
Converse (≤): [Polyanskiy et al. 10’]
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The Lesson from P2P Channel

We can achieve

logM∗(n, ε,P) = nC (P)−
√
nV (P)Q−1(ε) +

1
2

log n + O(1)

by using
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Motivation (MAC)

We are interested in refining the achievable third-order term for the
Gaussian MAC in the finite blocklength regime.
For the point-to-point case, it is known that the third-order term
+1/2 log n is optimal. We want to show that +1/2 log n1 is
achievable for the Gaussian MAC.
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Gaussian MAC - Main Result

Theorem
For any ε ∈ (0, 1) and any P1,P2 > 0, an (n,M1,M2, ε,P1,P2) code for
the two-transmitter Gaussian MAC exists provided that logM1

logM2
logM1M2

 ∈ nC(P1,P2)−
√
nQinv(V(P1,P2), ε) +

1
2

log n1 + O(1)1.

C(P1,P2) =

 C(P1)
C(P2)

C(P1 + P2)

 = capacity vector

V(P1,P2) = 3× 3 positive-definite dispersion matrix

Qinv(V, ε) = multidimensional counterpart of inverse Q-function

Qinv(V, ε) ,
{
z ∈ Rd : P[Z ≤ z] ≥ 1− ε

}
where Z ∼ N (0,V) component-wise
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What does Qinv(V, ε) look like?

Qinv(1, ε) , {x : x ≥ Q−1(ε)} Qinv(V, ε) ,
{
z ∈ Rd : P[Z ≤ z] ≥ 1− ε

}

PDF of N(0, 1)
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Example

Achievable region for P1 = 2,P2 = 1 and ε = 10−3:
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Comparison with the literature

Our third-order term improves!

nC(P1,P2)−
√
nQinv(V(P1,P2), ε)+

1
2

log n1 + O(1)1

> O
(
n1/4) 1 [MolavianJazi-Laneman 15’]

> O
(
n1/4 log n

)
1 [Scarlett et al. 15’]

Proof techniques:
Our bound: Spherical codebook + Maximum-likelihood decoder
[MolavianJazi-Laneman 15’] : Spherical codebook + threshold decoder
[Scarlett et al. 15’] : Constant composition codes + Quantization
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Encoding and decoding

Encoding: independently generate Mk codewords for k = 1, 2:

[Shannon 49’] used spherical codebook to bound error exponent of the
P2P Gaussian channel.
Decoding: Mutual information density

ı1,2(xn1 , x
n
2 ; yn) , log

PY n
2 |X n

1 ,X
n
2

(yn|xn1 , xn2 )

PY n
2

(yn)

Maximum likelihood (ML) Decoder:

g(yn) = arg max
m1,m2

ı1,2(f1(m1), f2(m2); yn)
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Main Tool: Random-Coding Union (RCU) Bound

P2P case: proved in [Polyanskiy et al. 10’]
Using the ML decoder, for a general MAC:

Theorem (New RCU bound for MAC)

For arbitrary input distributions PX1 and PX2 , there exists a
(M1,M2, ε)-MAC code such that

ε ≤ E
[

min
{
1, (M1 − 1)P

[
ı1(X̄1;Y2|X2) ≥ ı1(X1;Y2|X2) | X1,X2,Y2

]
+ (M2 − 1)P

[
ı2(X̄2;Y2|X1) ≥ ı2(X2;Y2|X1) | X1,X2,Y2

]
+ (M1 − 1)(M2 − 1)P

[
ı1,2(X̄1, X̄2;Y2) ≥ ı1,2(X1,X2;Y2) | X1,X2,Y2

] }]
,

where PX1,X̄1,X2,X̄2,Y2
(x1, x̄1, x2, x̄2, y) =

PX1(x1)PX1(x̄1)PX2(x2)PX2(x̄2)PY2|X1X2(y |x1, x2).

Crucial in refining the third-order term to 1
2 log n
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Key Challenge
Modified mutual information density r.v.:

ı̃2 ,

 ı̃1(X
n
1 ;Y

n
2 |X n

2 )
ı̃2(X

n
2 ;Y

n
2 |X n

1 )
ı̃1,2(X

n
1 ,X

n
2 ;Y

n
2 )

− nC(P1,P2)

ı̃1,2(x
n
1 , x

n
2 ; y

n) , log
PY n

2 |X
n
1 ,X

n
2
(yn|xn

1 , x
n
2 )

QY n
2
(yn)

with QY n
2
∼ N (0, (1+ P1 + P2)In)

Lemma (New Berry-Esséen type bound)
Let D ∈ R3 be a convex, Borel measurable set and Z ∼ N (0,V(P1,P2)). Then∣∣∣∣P [ 1√

n
ı̃2 ∈ D

]
− P [Z ∈ D]

∣∣∣∣ ≤ C0√
n

[MolavianJazi-Laneman 15’, Prop. 1] showed a weaker upper bound with
O
(

1
n1/4

)
using CLT for functions =⇒ affects the third-order term

We use a different technique to prove this lemma.
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Proof of Lemma

Problem: We cannot use Berry-Esséen theorem directly since X n
1 and

X n
2 are not i.i.d.

Solution:
Conditional dist. ı̃2|〈X n

1 ,X
n
2 〉 = q is a sum of independent r.v.s

Apply the multidimensional Berry-Esséen theorem to that sum of
independent vectors after conditioning on the inner product 〈X n

1 ,X
n
2 〉.

Then integrate the probabilities over q.
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Extension to K -transmitter (Pk = P , Mk = M ∀ k ∈ [K ])

Theorem

For any ε ∈ (0, 1), and P > 0, an (n,M1, ε,P1)-MAC code for the
K -transmitter Gaussian MAC exists provided that

K logM ≤ nC (KP)−
√

n(V (KP) + Vcr(K ,P))Q−1(ε) +
1
2

log n + O(1).

Vcr(K ,P) is the cross dispersion term

Vcr(K ,P) =
K (K − 1)P2

2(1 + KP)2 .
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Talk Plan

We present two achievability results for

1 Gaussian Multiple Access Channel (MAC)

2 Gaussian Random Access Channel (RAC)
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Random access

Random access solutions such as ALOHA, treating interference as
noise, or orthogonalization methods (TDMA/FDMA) perform poorly.
We want to design a random access communication strategy that

does not require the knowledge of transmitter activity
and still does not cause a performance loss compared to k-MAC.
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Rateless Gaussian RAC Communication

There are K transmitters in total. A subset of those with size k are active.
Nobody knows the active transmitters.
No probability of being active is assigned to transmitters.
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Rateless Gaussian RAC Communication

Identical encoding and list decoding as in [Polyanskiy 17’]
Average probability of error ≤ εk for k = 0, . . . ,K

New: Gaussian RAC, maximal power constraint: ‖f(m)nk ‖2 ≤ nkP for all k and m
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Rateless Gaussian RAC Communication

Rateless coding scheme that we defined in the context of DMCs [Effros, Kostina, Yavas, “Random access
channel coding in the finite blocklength regime", 18’]

Predetermined decoding times: n0, . . . , nK
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Communication Process
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RAC Code Definition

Definition

An
(
{nk , εk}Kk=0,M,P

)
-RAC consists of

an encoder function f
decoding functions {gk}Kk=0

such that
Maximal power constraints are satisfied:

‖f(m)nk‖2 ≤ nkP for m ∈ {1, . . . ,M}, k ∈ {1, . . . ,K}

and

1
Mk

∑
m[k]∈[M]k

P
[ { ⋃

t<k

{gt(Y nt
k ) 6= e}

}⋃{
gk(Y

nk
k )

π

6= m[k]

}∣∣∣∣X nk
[k] = f(m[k])

nk

]
≤ εk

the average probability of error in decoding k messages at time nk
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Gaussian RAC - Main Result

Theorem
For any K <∞, εk ∈ (0, 1) and any P > 0, an (M, {(nk , εk)}Kk=0,P)-code
for the Gaussian RAC exists provided that

k logM ≤ nkC (kP)−
√

nk(V (kP) + Vcr(k ,P))Q−1(εk)+
1
2

log nk + O(1)

for all k ∈ [K ], for some positive constant C .

The same first, second, and third-order terms as in Gaussian MAC
with known number of transmitters!
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Gaussian RAC - Encoding

To satisfy the maximal power constraints for all decoding times
simultaneously, we set the input distribution as:
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Feasible codeword set for Gaussian RAC

n1 = 2, n2 = 3,P = 1
3 :

1

1If we use this input dist. for the Gaussian MAC, we achieve the same first three order terms.
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Gaussian RAC - Decoding

Mutual information density for t transmitters:

ı[t](x
nt
[t]; y

nt ) , log
PY

nt
t |X

nt
[t]

(ynt |xnt[t])

PY
nt
t

(ynt )

Decoder output at time nt is

gt(ynt ) =

arg max
m[t]

ı[t](f(m[t])
nt ; ynt ) if

∣∣∣ 1
nt
‖ynt‖2 − (1 + tP)

∣∣∣ ≤ λt
e otherwise

If e, send ACK = 0 to request the next subcodeword of length nt+1 − nt
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Summary of the main theorems

Gaussian MAC:
We refine the achievable third-order term to 1/2 log n1 by using
spherical codebook and ML decoder.
We derive a Berry-Esséen type bound for the spherical codebook.

Gaussian RAC:
Our proposed rateless code performs as well in the first-, second-,
and third-order terms as the best known communication scheme
when the set of active transmitters is known.
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